منابع مشابه
Image Decompositions Using Bounded Variation and Generalized Homogeneous Besov Spaces
This paper is devoted to the decomposition of an image f into u+ v, with u a piecewise-smooth or “cartoon” component, and v an oscillatory component (texture or noise), in a variational approach. Y. Meyer [Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol. 22, Amer. Math. Soc., Providence, RI, 2001] proposed refinements of the t...
متن کاملFrame Characterizations of Besov and Triebel–lizorkin Spaces on Spaces of Homogeneous Type and Their Applications
The author first establishes the frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. As applications, the author then obtains some estimates of entropy numbers for the compact embeddings between Besov spaces or between Triebel–Lizorkin spaces. Moreover, some real interpolation theorems on these spaces are also established by using these frame characteriza...
متن کاملInterpolation of Besov Spaces
We investigate Besov spaces and their connection with dyadic spline approximation in Lp(Cl), 0 < p < oo. Our main results are: the determination of the interpolation spaces between a pair of Besov spaces; an atomic decomposition for functions in a Besov space; the characterization of the class of functions which have certain prescribed degree of approximation by dyadic splines.
متن کاملGreedy Bases for Besov Spaces
We prove that the Banach spaces (⊕n=1`p )`q , which are isomorphic to the Besov spaces on [0, 1], have greedy bases, whenever 1 ≤ p ≤ ∞ and 1 < q < ∞. Furthermore, the Banach spaces (⊕n=1`p )`1 , with 1 < p ≤ ∞, and (⊕n=1`p )c0 , with 1 ≤ p < ∞ do not have a greedy bases. We prove as well that the space (⊕n=1`p )`q has a 1-greedy basis if and only if 1 ≤ p = q ≤ ∞.
متن کاملDecomposition of Besov-Morrey Spaces
We establish a decomposition of Besov-Morrey spaces in terms of smooth “wavelets” obtained from a Littlewood-Paley partition of unity, or more generally molecules concentrated on dyadic cubes. We show that an expansion in atoms supported on dyadic cubes holds. We study atoms in Morrey spaces and prove a Littlewood-Paley theorem. Our results extend those of M. Frazier and B. Jawerth for Besov sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2020
ISSN: 2156-2261
DOI: 10.1215/21562261-2019-0038